130 research outputs found

    Soft-excess in ULX spectra: the chilled-disk scenario

    Get PDF
    Soft X-ray spectra of ULXs show small deviations from a power-law model, that can be attributed to reprocessing in a fast, ionized outflow, or to thermal emission from a cool disk. If it is thermal emission, the cool peak temperature can be explained by an inner disk that radiates only a small fraction of the gravitational power, transferring the rest to an upscattering medium which is then responsible for the dominant power-law component. This scenario does not require intermediate-mass black holes: we use a phenomenological model to show that the observed X-ray luminosities and spectra of ULXs are consistent with typical masses ~ 50-100 Msun.Comment: To appear in the proceedings of "The Multicoloured Landscape of Compact Objects and their Explosive Progenitors: Theory vs Observations", Cefalu', Sicily, June 11-24, 2006 (AIP

    On the origin of radio core emission in radio-quiet quasars

    Full text link
    We present a model for the radio emission from radio-quiet quasar nuclei. We show that a thermal origin for the high brightness temperature, flat spectrum point sources (known as radio ``cores'') is possible provided the emitting region is hot and optically-thin. We hence demonstrate that optically-thin bremsstrahlung from a slow, dense disk wind can make a significant contribution to the observed levels of radio core emission. This is a much more satisfactory explanation, particularly for sources where there is no evidence of a jet, than a sequence of self-absorbed synchrotron components which collectively conspire to give a flat spectrum. Furthermore, such core phenomena are already observed directly via milli-arcsecond radio imaging of the Galactic microquasar SS433 and the active galaxy NGC1068. We contend that radio-emitting disk winds must be operating at some level in radio-loud quasars and radio galaxies as well (although in these cases, observations of the radio cores are frequently contaminated/dominated by synchrotron emission from jet knots). This interpretation of radio core emission mandates mass accretion rates that are substantially higher than Eddington. Moreover, acknowledgment of this mass-loss mechanism as an AGN feedback process has important implications for the input of energy and hot gas into the inter-galactic medium (IGM) since it is considerably less directional than that from jets.Comment: to appear in ApJ Letters (4 pages

    New Global 3D MHD Simulations of Black Hole Disk Accretion and Outflows

    Full text link
    It is widely accepted that quasars and other active galactic nuclei (AGN) are powered by accretion of matter onto a central supermassive black hole. While numerical simulations have demonstrated the importance of magnetic fields in generating the turbulence believed necessary for accretion, so far they have not produced the high mass accretion rates required to explain the most powerful sources. We describe new global 3D simulations we are developing to assess the importance of radiation and non-ideal MHD in generating magnetized outflows that can enhance the overall rates of angular momentum transport and mass accretion.Comment: 2 pages, including 1 colour figure. To appear in proceedings of IAU Symposium 259: "Cosmic Magnetic Fields: From Planets, To Stars and Galaxies", Tenerife, Nov 200

    X-ray polarization from accreting white dwarfs and associated systems

    Full text link
    We present our results of Monte-Carlo simulations of polarized Compton X-rays from magnetic cataclysmic variables, with realistic density, temperature and velocity structures in the accretion flow. Our study has shown that the X-ray linear polarization may reach about 8% for systems with high accretion rates viewed at a high viewing inclination angle. This value is roughly twice the maximum value obtained by previous studies which assumed a cold, static emission region with a uniform density. We also investigate the X-ray polarization properties of ultra-compact double-degenerate binaries for the unipolar-inductor and direct-impact accretor models. Our study has shown negligible X-ray polarization for the unipolar-induction model. However, the direct-impact accretor model may give X-ray polarization levels similar to that predicted for the magnetic cataclysmic variables.Comment: to appear in "X-ray Polarimetry: A New Window in Astrophysics", edited by R. Bellazzini, E. Costa, G. Matt and G. Tagliaferr

    Enhanced MHD transport in astrophysical accretion flows: turbulence, winds and jets

    Full text link
    Astrophysical accretion is arguably the most prevalent physical process in the Universe; it occurs during the birth and death of individual stars and plays a pivotal role in the evolution of entire galaxies. Accretion onto a black hole, in particular, is also the most efficient mechanism known in nature, converting up to 40% of accreting rest mass energy into spectacular forms such as high-energy (X-ray and gamma-ray) emission and relativistic jets. Whilst magnetic fields are thought to be ultimately responsible for these phenomena, our understanding of the microphysics of MHD turbulence in accretion flows as well as large-scale MHD outflows remains far from complete. We present a new theoretical model for astrophysical disk accretion which considers enhanced vertical transport of momentum and energy by MHD winds and jets, as well as transport resulting from MHD turbulence. We also describe new global, 3D simulations that we are currently developing to investigate the extent to which non-ideal MHD effects may explain how small-scale, turbulent fields (generated by the magnetorotational instability -- MRI) might evolve into large-scale, ordered fields that produce a magnetized corona and/or jets where the highest energy phenomena necessarily originate.Comment: 8 pages, 2 figures. Minor revision, published version: Proc 14th International Congress on Plasma Physics, Fukuoka, Japan, Sep 200

    Black hole masses and accretion states in ULXs

    Get PDF
    We summarize indirect empirical arguments used for estimating black hole (BH) masses in ultraluminous X-ray sources (ULXs). The interpretation of the X-ray data is still too model-dependent to provide tight constraints, but masses <~ 100 Msun seem the most likely. It is getting clearer that ULXs do not show the same evolutionary sequence between canonical spectral states as stellar-mass BHs, nor the same timescale for state transitions. Most ULX spectra are consistent either with a power-law-dominated state (apparently identical to the canonical low/hard state), or with a very high state (or slim-disk state). Despite often showing luminosity variability, there is little evidence of ULXs settling into a canonical high/soft state, dominated by a standard disk (disk-blackbody spectrum). It is possible that the mass accretion rate (but not necessarily the luminosity) is always higher than Eddington; but there may be additional physical differences between stellar-mass BHs and ULXs, which disfavour transitions to the standard-disk, radio-quiet state in the latter class. We speculate that the hard state in ULXs is associated with jet or magnetic processes rather than an ADAF, can persist up to accretion rates ~ Eddington, and can lead directly to the very high state.Comment: 8 pages; to appear in the proceedings of the conference "Observational Evidence of Black Holes", Kolkata, February 200
    • …
    corecore